

alzheimer's RS association

### SUBJECTIVE COGNITIVE DECLINE PROFESSIONAL INTEREST AREA

January 11, 2023

# Year in Review Federica Cacciamani

Moderator: M. Dubbelman Panelists: S. Chapman, K. Gifford, D. Moretti & R. Nosheny

> Neuropsychologist, post-doc researcher Bordeaux Population Health Center, France



### Overview of 2022 research on subjective cognitive decline

Subjective Cognitive Decline (SCD) is defined as a selfexperienced decline in cognitive ability from a previous normal state, while age-, sex- and education-adjusted performance on standardized tests is normal

(Jessen et al., 2014, 2020)



### Overview of 2022 research on subjective cognitive decline



Characterisation of SCD due to AD, clinical progression, and risk of MCI/dementia

> **Bio-psycho-social factors** contributing to SCD (other than AD)

Informant-reported complaint

SCD and psychiatric symptoms

### Overview of 2022 research on subjective cognitive decline



Characterisation of SCD due to AD, clinical progression, and risk of MCI/dementia

> **Bio-psycho-social factors** contributing to SCD (other than AD)

Informant-reported complaint

SCD and psychiatric symptoms

### New evidence on the clinical progression of SCD

Progression of Subjective Cognitive Decline to MCI or Dementia in Relation to Biomarkers for Alzheimer Disease: A Meta-analysis. Rostamzadeh A, Bohr L, Wagner M, Baethge C, Jessen F. Neurology

| STUDY TYPE | Meta-analysis, 8 studies included |
|------------|-----------------------------------|
|------------|-----------------------------------|

Ctudy SCD individuals with full AD MAIN RESULT pathology (both amyloid and tau) had a substantially increased risk of progressing to MCI or dementia, compared to SCD individuals without AD pathology or with only one positive biomarker

| Study                                                    |
|----------------------------------------------------------|
| Ref. #18<br>Ref. #17<br>Ref. #13<br>Ref. #21<br>Ref. #19 |
| Amyloid pathology (combined)                             |
| Ref. #17<br>Ref. #18 —<br>Ref. #21                       |
| p-tau pathology (combined)                               |
| Ref. #17<br>Ref. #18<br>Ref. #20                         |
| t-tau pathology (combined)                               |
| Ref. #17<br>Ref. #18<br>Ref. #16<br>Ref. #9              |
| Aβ/t-tau ratio pathology (combined)                      |
| Ref. #17<br>Ref. #21                                     |
| Full AD profile (combined)                               |

| OR                                      | <i>z</i><br>value                    | <i>p</i><br>value                    |
|-----------------------------------------|--------------------------------------|--------------------------------------|
| 14.77<br>3.95<br>26.22<br>11.23<br>1.91 | 2.25<br>2.81<br>2.18<br>6.85<br>1.49 | 0.02<br>0.01<br>0.03<br>0.00<br>0.14 |
| <br>5.89                                | 3.29                                 | 0.00                                 |
| <br>2.95<br>2.88<br>4.65                | 2.08<br>0.87<br>4.59                 | 0.04<br>0.38<br>0.00                 |
| <br>3.99                                | 5.05                                 | 0.00                                 |
| <br>2.15<br>0.71<br>2.86                | 1.65<br>-0.22<br>1.84                | 0.10<br>0.83<br>0.06                 |
| <br>2.26                                | 2.33                                 | 0.02                                 |
| 5.68<br>3.75<br>2.90<br>7.36            | 3.43<br>1.28<br>0.64<br>3.14         | 0.00<br>0.20<br>0.52<br>0.00         |
| <br>5.69                                | 4.81                                 | 0.00                                 |
| <br>4.54<br>27.11                       | 2.77<br>7.14                         | 0.01<br>0.00                         |
| <br>11.36                               | 2.72                                 | 0.01                                 |

1.00 100.00

### New evidence on the clinical progression of SCD

Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers. Jessen F, Wolfsgruber S, Kleineindam L, Spottke A, Altenstein S, Bartels C, Berger M, et al. Alzheimers Dement

OBJECTIVE Whether SCD may serve for the identification of stage 2 of the AD continuum (Jack et al, 2018)

 $\epsilon$ PARTICIPANTS SCD (n=445); non-SCD controls (n=236); aMCI (n=190); mild AD (n=126)

- MAIN RESULTS SCD group [vs non-SCD]  $\rightarrow$  slightly more behavioral, functional, and cognitive symptoms, and CSF A $\beta$  had a greater effect on cognitive decline;
  - $A\beta$  + SCD (39.3% of all SCD) [vs  $A\beta$  + non-SCD]  $\rightarrow$  greater behavioral, functional, and cognitive impairment, greater hippocampal atrophy.

TAKE-HOME  $A\beta$ + SCD individuals may represent stage 2 of the AD continuum. **MESSAGE** 

### Relationship between SCD and AD



5/18

# Individuals with early-stage AD

## New evidence on the clinical progression of SCD

Clinical Progression of Baseline Risk States for Mild Cognitive Impairment. Goldberg SM, Zhao Y, Cheng Y, Weinstein AM, Gujral S, Berman SB, Sweet RA, Butters MA, Lopez OL, Snitz BE. J Alzheimers Dis

OBJECTIVE Investigating the risk of MCI or dementia in two clinical "grey zones"

**PARTICIPANTS** 1) SCD and normal cognition (n = 107)

2) very mild impairment (-1 SD) without SCD (n = 74)



TAKE-HOME MESSAGE

 $\epsilon$ 

Individuals with SCD and normal cognition and those with very mild impairment without SCD may both be at risk of AD

## Bio-psycho-social factors contributing to SCD (other than AD)

SCD was strongly associated with longstanding psychiatric and personality variables, rather than with a family history of dementia (Reynolds et al., 2022, J Prev Alzheimers Dis)

Both longer sleep duration (>8h) and shorter duration (<8h) were linked to worse SCD (Lin et al., 2022, BMC Psychiatry)

SCD was suggestive of **cerebrovascular** disease (Pitti et al., 2022, Ageing Res Rev)

Common chronic diseases and socio-demographic characteristics (Lin et al., 2022, BMC Public Health)

Smoking (greatest prevalence of SCD among current smokers) (Rajczyk et al., 2022, J Alzheimers Dis)

Those who had 4+ adverse childhood experiences had 3 times higher odds of having SCD when compared to respondents with no adverse childhood experiences (Baiden et al., 2022, Aging Ment Health)

Psychosocial variables (i.e., depression, perceived social status, and personality traits) (Hopper et al., 2022, Gerontology)

## Characterizing SCD due to AD

Characteristics of subjective cognitive decline associated with amyloid positivity Janssen O, Jansen WJ, Vos SJB, Boada M, Parnetti L, Gabryelewicz T, Fladby T, Molinuevo JL, , et al. Alzheimers Dement

OBJECTIVE Clarifying which general and SCD-specific characteristics are associated with A $\beta$ +

PARTICIPANTS 20 cohorts included in the Amyloid Biomarker Study (1640 subjects with SCD)

- MAIN RESULTS In research settings: greater probability of A $\beta$ + in the case of confirmation by  $\bullet$ an informant (vs non-confirmation), in individuals with *memory* complaint (vs without), and with *attention* complaint (vs without).
  - In clinical settings: no association between these 3 and A $\beta$ +.
  - In older subjects, greater feeling of worse performance was associated with a higher frequency of A $\beta$ + (and a lower frequency of A $\beta$ + in younger subjects).
  - No association between concerns and  $A\beta$ +.

**TAKE-HOME** SCD characteristics such as memory, attention, and informant complaints may **MESSAGE** facilitate the identification of  $A\beta$ + individuals in research settings.

## Characterizing SCD due to AD

Self-reported word-finding complaints are associated with CSF amyloid beta and atrophy in cognitively normal older adults. Montembeault M, Stijelja S, Brambati SM. Alzheimers Dement (Amst)

OBJECTIVE Clarifying the clinical significance of self-reported word-finding difficulties

PARTICIPANTS 239 cognitively-normal individuals

- MAIN RESULTS Ecog-Lang1 (Forgetting names of objects) significantly predicted A $\beta$  levels in the CSF
  - Individuals with greater word-finding complaints showed greater atrophy than cognitively-normal individuals with less intense complaints.
- **TAKE-HOME** Word-finding complaints have the potential to identify CN at risk of AD. These MESSAGE results support the need to include other cognitive domains in the investigation of SCD

### Relationship between SCD and AD



10/18

# Individuals with early-stage AD

### May the informant be a more accurate/specific source of information than the patient themself?

Do informant-reported subjective cognitive complaints predict progression to mild cognitive impairment and dementia better than self-reported complaints in old adults? A meta-analytical study. Pérez-Blanco L, Felpete A, Patten SB, et al. Ageing Res Rev

STUDY TYPE Meta-analysis, 7 studies included

- MAIN RESULT Both self-reported and informant-reported complaints were associated with an high risk of transition from normal cognition to MCI and/or dementia. The association was stronger and more robust for informant-reported complaint (relative risk = 1.38) than for self-reported complaint (relative risk = 1.27).
- **TAKE-HOME** Corroborated information from an informant could provide important details for **MESSAGE** distinguishing between normal aging and clinical states.

The role of dyadic cognitive report and subjective cognitive decline in early ADRD clinical research and trials: Current knowledge, gaps, and recommendations. Nosheny RL, Amariglio R, Sikkes SAM, Van Hulle C, Bicalho MAC, et al. Alzheimers Dement (NY)

STUDY TYPE Position paper on reports of cognitive decline from patient/informant dyads

- MAIN RESULTS Dyadic measures of SCD are associated with clinical diagnosis, objective measures of cognition, clinical progression, and biomarkers.
  - External factors contribute to these associations:
    - dyad relationship type
    - neuropsychiatric symptoms of both the participant and study partner
    - caregiver burden
    - cognitive status of study-partners
- LIMITATIONS / The requirement of a study partner is one of the most important barriers to **CHALLENGES** enrolling participants in clinical research.

**TAKE-HOME** They recommend greater dyad report use in research settings to identify AD risk. **MESSAGE** 

Differential Patterns of Domain-Specific Cognitive Complaints and Awareness Across the Alzheimer's Disease Spectrum. Cacciamani F, Godefroy V, Brambati SM, Migliaccio R, Epelbaum S, Montembeault M. Front Aging Neurosci

- OBJECTIVE Which source of information between the self-reported and the informant-reported complaint is the most useful for distinguishing various groups on the AD spectrum
- PARTICIPANTS  $A\beta + AD (n=71); A\beta + aMCI (n=191); A\beta + CN (n=181); A\beta - CN (n=211) [ADNI]$
- MAIN RESULTS Memory, language, attention, and visuospatial complaints reported by a study partner were all more accurate classifiers into clinical stages (all AUCs between 0.70 and 0.99) than the same kind of complaint reported by the patient themself (all AUCs between 0.60 and 0.85).
- **TAKE-HOME** The presence of an informant seems necessary in both clinical practice and **MESSAGE** research given its accuracy as a source of information.

Subjective Cognitive Decline Is More Accurate When Metamemory Is Better. Chapman S, Joyce JL, Barker MS, Sunderaraman P, Rizer S, Huey ED, Dworkin J, Gu Y, Cosentino S. Front Aging Neurosci

- OBJECTIVE Examine the extent to which metamemory moderates the relationship between SCD and objective memory
- PARTICIPANTS 157 cognitively-normal individuals performing the Modified feeling of knowing scale (Cosentino et al.)
- MAIN RESULTS  $\left( - \right)$ More accurate metamemory  $\rightarrow$  stronger association between increased complaints and susceptibility to semantic proactive interference.
- **TAKE-HOME** Metamemory, specifically the ability to adjust moment-to-moment predictions in **MESSAGE** line with their performance, can influence the extent to which SCD maps onto objective cognition.

### Relationship between SCD and AD



15/18

# Individuals with early-stage AD

# Can we identify individuals at risk based on SCD and plasma markers?

### SCD and plasma AD biomarkers

Alzheimer's Disease Plasma Biomarkers Distinguish Clinical Diagnostic Groups in Memory Clinic Patients Gerards M, Schild AK, Meiberth D, Rostamzadeh A, Vehreschild JJ, Wingen-Heimann S, et al. Dement Geriatr Cogn Disord

OBJECTIVE  $\epsilon$ Performance of blood biomarkers in differentiating groups in a clinical setting

 $\mathbf{\mathbf{\mathbf{F}}}$ PARTICIPANTS N=144, including SCD, MCI, and AD





A $\beta$ 42/40, NFL and, especially, pTau181 can discriminate between clinical groups



## **Opportunities for 2023**

To characterize the SCD most suggestive of early-stage AD

- Identify the most sensitive and specific questions
- Further research on SCD in minority groups

To identify the best combination of SCD-related questions and biomarkers for detecting early-stage AD



- When is it more sensitive and specific (according to the type of patient-informant relationship, the characteristics of the informant, the cognitive domains investigated, etc.)?
- How to improve and facilitate study partner engagement?
- To optimize its assessment



Better understand the link between SCD and mood symptoms



To evaluate the utility of SCD as an outcome measure in clinical trials



To examine the effects of cognitive and psychological interventions on SCD



SUBJECTIVE COGNITIVE DECLINE **PROFESSIONAL INTEREST AREA** 

## Thank you for your attention!

federica.cacciamani@u-bordeaux.fr



Additional readings

# Characterisation of SCD due to AD, clinical progression, risk of MCI/dementia

| Title                                                              | Authors                                             | Journal                    |
|--------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
| Regional brain atrophy and cognitive decline depend on definition  | Morrison C, Dadar M, Shafiee N, Villeneuve S, Louis | Neuroimage Clin            |
| of subjective cognitive decline                                    | Collins D                                           |                            |
| Subjective cognitive decline in Brazil: Prevalence and association | Borelli WV, Zimmer ER, Bieger A, Coelho B, Pascoal  | Alzheimers Dement (Amst)   |
| with dementia modifiable risk factors in a population-based study  | TA, Chaves MLF, Amariglio R, Castilhos RM.          |                            |
| A latent class analysis of cognitive decline in US adults, BRFSS   | Snead R, Dumenci L, Jones RM.                       | BMC Public Health          |
| 2015-2020                                                          |                                                     |                            |
| Subjective cognitive decline, APOE e4 allele, and the risk of      | Liew TM.                                            | Aust N Z J Psychiatry      |
| neurocognitive disorders: Age- and sex-stratified cohort study     |                                                     |                            |
| Subjective Cognitive Decline: Level of Risk for Future Dementia    | Pike KE, Cavuoto MG, Li L, Wright BJ, Kinsella GJ.  | Neuropsychol Rev           |
| and MCI, a Meta-Analysis of Longitudinal Studies                   |                                                     |                            |
| Longitudinal change in ATN biomarkers in cognitively normal        | Ebenau JL, Visser D, Kroeze LA, van Leeuwenstijn    | Alzheimers Res Ther        |
| individuals                                                        | MSSA, van Harten AC, Windhorst AD, et al.           |                            |
| Subjective short-term memory difficulties at ages 50-75 predict    | Möllers T, Stocker H, Perna L, Rujescu D, Holleczek | Age Ageing                 |
| dementia risk in a community-based cohort followed over 17 years   | B, Schöttker B, Brenner H.                          |                            |
| Transition from MCI to normal cognition: Determining the           | Sanz-Blasco R, Ruiz-Sánchez de León JM, Ávila-      | Alzheimers Dement          |
| predictors of reversion with multi-state Markov models             | Villanueva M, Valentí-Soler M, et al.               |                            |
| Relevance of Subjective Cognitive Decline in Older Adults with a   | Wolfsgruber S, Kleineidam L, Weyrauch AS, Barkhoff  | J Alzheimers Dis           |
| First-Degree Family History of Alzheimer's Disease                 | M, Röske S, Peters O, Preis L, Gref D, et al.       |                            |
| Timed Up and Go in People with Subjective Cognitive Decline Is     | Borda MG, Ferreira D, Selnes P, Tovar-Rios DA,      | Dement Geriatr Cogn Disord |
| Associated with Faster Cognitive Deterioration and Cortical        | Jaramillo-Jiménez A, Kirsebom BE, et al.            |                            |
| Thickness                                                          |                                                     |                            |

## Bio-psycho-social factors contributing to SCD (other than AD)

| Title                                                              | Authors                                          |
|--------------------------------------------------------------------|--------------------------------------------------|
| Examining the Role of Aging Perceptions in Subjective Cognitive    | Chapman S, Weiss D, Broulíková HM,               |
| Decline                                                            | Sunderaraman P, Barker MS, Joyce JL, Azar M,     |
|                                                                    | McKeague I, Kriesl WC, Cosentino S.              |
| Subjective cognitive decline and self-reported sleep problems:     | Exalto LG, Hendriksen HMA, Barkhof F, van den    |
| The SCIENCe project                                                | Bosch KA, Ebenau JL, van Leeuwenstijn-Koopman    |
|                                                                    | M, Prins ND, Teunissen CE, Visser LNC, Scheltens |
|                                                                    | P, van der Flier WM.                             |
| Adverse childhood experience categories and subjective             | Terry RM, Schiffmacher SE, Dutcher AA, Croff JM, |
| cognitive decline in adulthood: an analysis of the Behavioral Risk | Jelley MJ, Hartwell ML.                          |
| Factor Surveillance System                                         |                                                  |

| Journal                    |
|----------------------------|
| Alzheimer Dis Assoc Disord |
|                            |
| Alzheimers Dement (Amst)   |
|                            |
|                            |
| J Osteopath Med            |
|                            |
|                            |

| Title                                                                                                                                                                       | Authors                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subjective Cognitive Decline and its Relation to Verbal Memory and Sex in Cognitively<br>Unimpaired Individuals from a Colombian Cohort with Autosomal-Dominant Alzheimer's | Martinez JE, Pardilla-Delgado E, Guzmán-Vélez E, Vila-Castelar C, Amariglio<br>R, Gatchel J, Aguirre-Acevedo DC, Bocanegra Y, Baena A, Henao E, Tirado V, |
| Disease                                                                                                                                                                     | Muñoz C, Giraldo-Chica M, Lopera F, Quiroz YT.                                                                                                            |
| Economic and caregiver impact of Alzheimer's disease across the disease spectrum: a cohort study                                                                            | Dauphinot V, Potashman M, Levitchi-Benea M, Su R, Rubino I, Krolak-Salmon<br>P.                                                                           |
| Informant report of practical judgment ability in a clinical sample of older adults with subjective cognitive decline, mild cognitive impairment, and dementia              | Rabin LA, Guayara-Quinn CG, Nester CO, Ellis L, Paré N.                                                                                                   |

### Journal

J Int Neuropsychol Soc

Alzheimers Res Ther

Neuropsychol Dev Cogn B Aging Neuropsychol Cogn

## SCD and psychiatric symptoms

| Title                                                              | Authors                                                |
|--------------------------------------------------------------------|--------------------------------------------------------|
| Disentangling the relationship of subjective cognitive decline and | Kleineidam L, Wagner M, Guski J, Wolfsgruber S,        |
| depressive symptoms in the development of cognitive decline and    | Miebach L, Bickel H, König HH, Weyerer S,              |
| dementia                                                           | Lühmann D, Kaduszkiewicz H, Luppa M, Röhr S,           |
|                                                                    | Pentzek M, Wiese B, Maier W, Scherer M, Kornhuber      |
|                                                                    | J, Peters O, Frölich L, Wiltfang J, Lewczuk P, Hüll M, |
|                                                                    | Ramirez A, Jessen F, Riedel-Heller SG, Heser K.        |
| Specific depression dimensions are associated with a faster rate   | Soleimani L, Schnaider Beeri M, Grossman H, Sano       |
| of cognitive decline in older adults                               | M, Zhu CW.                                             |
| Depressive Symptoms Have Distinct Relationships With               | Moulinet I, Touron E, Mézenge F, Dautricourt S, De     |
| Neuroimaging Biomarkers Across the Alzheimer's Clinical            | La Sayette V, Vivien D, Marchant NL, Poisnel G,        |
| Continuum                                                          | Chételat G.                                            |
| Anxiety and Depressive Symptoms and Cortical Amyloid- $eta$        | Lewis CK, Bernstein OM, Grill JD, Gillen DL, Sultzer   |
| Burden in Cognitively Unimpaired Older Adults                      | DL.                                                    |
| A longitudinal study on quality of life along the spectrum of      | Mank A, Rijnhart JJM, van Maurik IS, Jönsson L,        |
| Alzheimer's disease                                                | Handels R, Bakker ED, Teunissen CE, van Berckel        |
|                                                                    | BNM, van Harten AC, Berkhof J, van der Flier WM.       |
| Unravelling neural correlates of empathy deficits in Subjective    | Giacomucci G, Galdo G, Polito C, Berti V, Padiglioni   |
| Cognitive Decline, Mild Cognitive Impairment and Alzheimer's       | S, Mazzeo S, Chiaro E, De Cristofaro MT, Bagnoli S,    |
| Disease                                                            | Nacmias B, Sorbi S, Bessi V.                           |

| Journal                  |
|--------------------------|
| Alzheimers Dement        |
|                          |
|                          |
|                          |
|                          |
|                          |
| Alzheimers Dement (Amst) |
|                          |
| Front Aging Neurosci     |
|                          |
| J Prev Alzheimers Dis    |
|                          |
| Alzheimers Res Ther      |
|                          |
|                          |
| Behav Brain Res          |
|                          |
|                          |

### Assessment of SCD

| Title                                                             | Authors                                         | Journal             |
|-------------------------------------------------------------------|-------------------------------------------------|---------------------|
| Measuring Subjective Cognitive Decline in Older Adults:           | Wells LF, Risacher SL, McDonald BC, Farlow MR,  | J Alzheimers Dis    |
| Harmonization Between the Cognitive Change Index and the          | Brosch J, Gao S, Apostolova LG, Saykin AJ;      |                     |
| Measurement of Everyday Cognition Instruments                     | Alzheimer's Disease Neuroimaging Initiative.    |                     |
| Evaluating measurement properties of subjective cognitive         | Ibnidris A, Robinson JN, Stubbs M, Piumatti G,  | Syst Rev            |
| decline self-reported outcome measures: a systematic review       | Govia I, Albanese E.                            |                     |
| The reliability and validity test of subjective cognitive decline | Hao L, Jia J, Xing Y, Han Y.                    | Brain Behav         |
| questionnaire 21 with population in a Chinese community           |                                                 |                     |
| The diagnostic usefulness of experimental memory tasks for        | De Simone MS, Rodini M, De Tollis M, Fadda L,   | Neuropsychology     |
| detecting subjective cognitive decline: Preliminary results in an | Caltagirone C, Carlesimo GA.                    |                     |
| Italian sample                                                    |                                                 |                     |
| Translation, cross-cultural adaptation, and validity of the       | Studart-Neto A, Moraes NC, Spera RR, Merlin SS, | Dement Neuropsychol |
| Brazilian version of the Cognitive Function Instrument            | Parmera JB, Jaluul O, SanchesYassuda M, Brucki  |                     |
|                                                                   | SMD, Nitrini R.                                 |                     |
| MASCoD-Multidimensional Assessment of Subjective Cognitive        | Maffoni M, Pierobon A, Fundarò C.               | Front Psychol       |
| Decline                                                           |                                                 |                     |

### SCD in different ethno-cultural groups

| Title                                                              | Authors                                            |
|--------------------------------------------------------------------|----------------------------------------------------|
| Subjective cognitive decline, mild cognitive impairment, and       | Smid J, Studart-Neto A, César-Freitas KG, Dourado  |
| dementia - syndromic approach: recommendations of the              | MCN, Kochhann R, Barbosa BJAP, Schilling LP,       |
| Scientific Department of Cognitive Neurology and Aging of the      | Balthazar MLF, Frota NAF, de Souza LC, Caramelli   |
| Brazilian Academy of Neurology                                     | P, Bertolucci PHF, Chaves MLF, Brucki SMD, Nitrini |
|                                                                    | R, Resende EPF, Vale FAC                           |
| Gender and Racial/Ethnic Disparities in Social Determinants of     | Brown MJ, Joseph C, James T, Haider MR, Zahnd      |
| Health and Subjective Cognitive Decline: The Mediating Role of     | WE, Cohen SA.                                      |
| Depression                                                         |                                                    |
| Associations Among Loneliness, Purpose in Life and Subjective      | Pluim CF, Anzai JAU, Martinez JE, Munera D, Garza- |
| Cognitive Decline in Ethnoracially Diverse Older Adults Living in  | Naveda AP, Vila-Castelar C, Guzmán-Vélez E,        |
| the United States                                                  | Ramirez-Gomez L, Bustin J, Serrano CM, Babulal     |
|                                                                    | GM, Okada de Oliveira M, Quiroz YT                 |
| Subjective Memory Decline Predicts Incident Cognitive              | Ferraro KF, Sauerteig-Rolston MR, Barnes LL,       |
| Impairment among White-but Not Black or Hispanic-Older Adults      | Friedman E, Sands LP, Thomas PA.                   |
| Subjective cognitive decline and objective cognition among         | Zlatar ZZ, Tarraf W, González KA, Vásquez PM,      |
| diverse U.S. Hispanics/Latinos: Results from the Study of Latinos- | Marquine MJ, Lipton RB, Gallo LC, Khambaty T,      |
| Investigation of Neurocognitive Aging (SOL-INCA)                   | Zeng D, Youngblood ME, Estrella ML, Isasi CR,      |
|                                                                    | Daviglus M, González HM.                           |
| Association of Subjective Cognitive Decline With Progression to    | Chapman S, Rentería MA, Dworkin JD, Garriga SM,    |
| Dementia in a Cognitively Unimpaired Multiracial Community         | Barker MS, Avila-Rieger J, Gonzalez C, Joyce JL, J |
| Sample                                                             | Vonk JM, Soto E, Manly JJ, Brickman A, Mayeux R,   |
|                                                                    | Cosentino SA.                                      |

| Journal             |
|---------------------|
| Dement Neuropsychol |
| J Gerontol Nurs     |
| J Appl Gero,tol     |
| Gerontologist       |
| Alzheimers Dement   |
| Neurology           |

## Sex and gender

| Title                                                                | Authors                                             |
|----------------------------------------------------------------------|-----------------------------------------------------|
| Gender differences in cognitive reserve: implication for subjective  | Giacomucci G, Mazzeo S, Padiglioni S, Bagnoli S,    |
| cognitive decline in women                                           | Belloni L, Ferrari C, Bracco L, Nacmias B, Sorbi S, |
|                                                                      | Bessi V.                                            |
| Overall and sex-specific risk factors for subjective cognitive       | Schliep KC, Barbeau WA, Lynch KE, Sorweid MK,       |
| decline: findings from the 2015-2018 Behavioral Risk Factor          | Varner MW, Foster NL, Qeadan F.                     |
| Surveillance System Survey                                           |                                                     |
| Subjective cognitive decline is a better marker for future cognitive | Oliver MD, Morrison C, Kamal F, Graham J, Dadar     |
| decline in females than in males                                     | М.                                                  |

| Journal             |
|---------------------|
| Neurol Sci          |
|                     |
|                     |
| Biol Sex Differ     |
|                     |
|                     |
| Alzheimers Res Ther |
|                     |

## Biomarkers (plasma)

| Title                                                                                                     | Authors                                               |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| A head-to-head comparison between plasma pTau181 and tau-                                                 | Coomans EM, Verberk IMW, Ossenkoppele R,              |
| PET along the Alzheimer's disease continuum                                                               | Verfaillie SCJ, Visser D, Gouda M, Tuncel H, Wolters  |
|                                                                                                           | et al.                                                |
| Plasma neurofilament light chain as a biomarker of Alzheimer's                                            | Giacomucci G, Mazzeo S, Bagnoli S, Ingannato A,       |
| disease in Subjective Cognitive Decline and Mild Cognitive                                                | Leccese D, Berti V, Padiglioni S, Galdo G, Ferrari C, |
| Impairment                                                                                                | Sorbi S, Bessi V, Nacmias B.                          |
| Plasma amyloid-beta oligomer is related to subjective cognitive                                           | Kim KY, Park J, Jeong YH, Kim HJ, Lee E, Park JY,     |
| decline and brain amyloid status                                                                          | Kim E, Kim WJ.                                        |
| Validity and Performance of Blood Biomarkers for Alzheimer                                                | Planche V, Bouteloup V, Pellegrin I, Mangin JF,       |
| Disease to Predict Dementia Risk in a Large Clinic-Based Cohort                                           | Dubois B, Ousset PJ, Pasquier F, Blanc F, Paquet C,   |
|                                                                                                           | Hanon O, Bennys K, Ceccaldi M, Annweiler C, et al.    |
| Clinical Application of Plasma Neurofilament Light Chain in a                                             | Shim Y.                                               |
| Memory Clinic: A Pilot Study                                                                              |                                                       |
| Association of plasma apolipoproteins and levels of inflammation-                                         | Wang T, Wang X, Yao Y, Zhao C, Yang C, Han Y, Ca      |
| related factors with different stages of Alzheimer's disease: a                                           | Υ.                                                    |
| cross-sectional study                                                                                     |                                                       |
| Machine Learning-Based Classification of Subjective Cognitive                                             | Chiu SI, Fan LY, Lin CH, Chen TF, Lim WS, Jang JR,    |
| Decline, Mild Cognitive Impairment, and Alzheimer's Dementia                                              | Chiu MJ.                                              |
| Using Neuroimage and Plasma Biomarkers                                                                    |                                                       |
| Non-linear Character of Plasma Amyloid Beta Over the Course of Cognitive Decline in Alzheimer's Continuum | Pan FF, Huang Q, Wang Y, Wang YF, Guan YH, Xie        |
|                                                                                                           | F, Guo QH.                                            |
|                                                                                                           |                                                       |

| Journal                 |
|-------------------------|
| J Nucl Med              |
|                         |
|                         |
| J Neurol                |
|                         |
|                         |
| Alzheimers Res Ther     |
|                         |
| Neurology               |
|                         |
|                         |
| Dement Neurocogn Disord |
| BMJ Open                |
|                         |
|                         |
| ACS Chem Neurosci       |
|                         |
|                         |
| Front Aging Neurosci    |
|                         |
|                         |

## Biomarkers (CSF)

| Title                                                            | Authors                                              |
|------------------------------------------------------------------|------------------------------------------------------|
| Association of Subjective Cognitive Decline with Cerebrospinal   | Wen C, Bi YL, Hu H, Huang SY, Ma YH, Hu HY, Tan      |
| Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively | L, Yu JT.                                            |
| Intact Older Adults: The CABLE Study                             |                                                      |
| Association of CSF Ab(38) Levels With Risk of Alzheimer Disease- | Cullen N, Janelidze S, Palmqvist S, Stomrud E,       |
| Related Decline                                                  | Mattsson-Carlgren N, Hansson O; Alzheimer's          |
|                                                                  | Disease Neuroimaging Initiative.                     |
| A Novel Neurofilament Light Chain ELISA Validated in Patients    | Das S, Dewit N, Jacobs D, Pijnenburg YAL, In 't Velc |
| with Alzheimer's Disease, Frontotemporal Dementia, and           | SGJG, Coppens S, Quaglia M, Hirtz C, Teunissen       |
| Subjective Cognitive Decline, and the Evaluation of Candidate    | CE, Vanmechelen E.                                   |
| Proteins for Immunoassay Calibration                             |                                                      |

|   | Journal          |
|---|------------------|
|   | J Alzheimers Dis |
|   |                  |
|   |                  |
|   | Neurology        |
|   |                  |
|   |                  |
| b | Int J Mol Sci    |
|   |                  |
|   |                  |
|   |                  |

## Biomarkers (functional imaging) 1/2

| Title                                                              | Authors                                            |
|--------------------------------------------------------------------|----------------------------------------------------|
| Prefrontal Activation During Effortful Processing Differentiates   | Yeung MK, Lee TL, Chan AS.                         |
| Memory Abilities in Adults with Memory Complaints                  |                                                    |
| Electroencephalography for Early Detection of Alzheimer's          | Shim Y, Yang DW, Ho S, Hong YJ, Jeong JH, Park     |
| Disease in Subjective Cognitive Decline                            | KH, Kim S, Wang MJ, Choi SH, Kang SW.              |
| Static and dynamic functional connectivity variability of the      | Wang Q, Chen B, Zhong X, Hou L, Zhang M, Yang      |
| anterior-posterior hippocampus with subjective cognitive decline   | M, Wu Z, Chen X, Mai N, et al.                     |
| Functional Connectivity Dynamics Altered of the Resting Brain in   | Wei YC, Kung YC, Huang WY, Lin C, Chen YL, Chen    |
| Subjective Cognitive Decline                                       | CK, Shyu YC, Lin CP.                               |
| Abnormal Dynamic Functional Networks in Subjective Cognitive       | Wang J, Wang K, Liu T, Wang L, Suo D, Xie Y,       |
| Decline and Alzheimer's Disease                                    | Funahashi S, Wu J, Pei G.                          |
| Sensitive and reproducible MEG resting-state metrics of functional | Schoonhoven DN, Briels CT, Hillebrand A, Scheltens |
| connectivity in Alzheimer's disease                                | P, Stam CJ, Gouw AA.                               |
| Discrimination of SCD from healthy control based on glucose-       | Ding C, Wang L, Han Y, Jiang J.                    |
| oxygen metabolism network coupling features and machine            |                                                    |
| learning                                                           |                                                    |
| MEG Oscillatory Slowing in Cognitive Impairment is Associated      | Bruña R, López-Sanz D, Maestú F, Cohen AD, Bagic   |
| with the Presence of Subjective Cognitive Decline                  | A, Huppert T, Kim T, Roush RE, Snitz B, Becker JT. |
| Negative affective burden is associated with higher resting-state  | Schwarz C, Benson GS, Antonenko D, Horn N, Köbe    |
| functional connectivity in subjective cognitive decline            | T, Klimecki O, Sommer W, Wirth M, Flöel A.         |

| Journal                                |
|----------------------------------------|
| J Alzheimers Dis                       |
| Dement Neurocogn Disord                |
| Alzheimers Res Ther                    |
| Front Aging Neurosci                   |
| Front Comput Neurosci                  |
| Alzheimers Res Ther                    |
| Annu Int Conf IEEE Eng Med Biol<br>Soc |
| Clin EEG Neurosci                      |
| Sci Rep                                |

## Biomarkers (functional imaging) 2/2

| Title                                                          | Authors                                                |
|----------------------------------------------------------------|--------------------------------------------------------|
| Exploring Network Properties Across Preclinical Stages of      | Lazarou I, Georgiadis K, Nikolopoulos S, Oikonomou     |
| Alzheimer's Disease Using a Visual Short-Term Memory and       | VP, Stavropoulos TG, Tsolaki A, Kompatsiaris I,        |
| Attention Task with High-Density Electroencephalography: A     | Tsolaki M; RADAR-AD Consortium.                        |
| Brain-Connectome Neurophysiological Study                      |                                                        |
| Differential Abnormality in Functional Connectivity Density in | Song Y, Wu H, Chen S, Ge H, Yan Z, Xue C, Qi W,        |
| Preclinical and Early-Stage Alzheimer's Disease                | Yuan Q, Liang X, Lin X, Chen J.                        |
| Exploring dynamic functional connectivity alterations in the   | Yang F, Jiang X, Yue F, Wang L, Boecker H, Han Y,      |
| preclinical stage of Alzheimer's disease: an exploratory study | Jiang J.                                               |
| from SILCODE                                                   |                                                        |
| Novelty-Related fMRI Responses of Precuneus and Medial         | Billette OV, Ziegler G, Aruci M, Schütze H, Kizilirmak |
| Temporal Regions in Individuals at Risk for Alzheimer Disease  | JM, Richter A, Altenstein S, Bartels C, et al.         |
| Use of machine learning to identify functional connectivity    | Shen Y, Lu Q, Zhang T, Yan H, Mansouri N,              |
| changes in a clinical cohort of patients at risk for dementia  | Osipowicz K, Tanglay O, Young I, Doyen S, Lu X,        |
|                                                                | Zhang X, Sughrue ME, Wang T.                           |

| Journal              |
|----------------------|
| J Alzheimers Dis     |
| Front Aging Neurosci |
| J Neural Eng         |
| Neurology            |
| Front Aging Neurosci |

## Biomarkers (genetics)

| Title                                                  | Authors                                           |
|--------------------------------------------------------|---------------------------------------------------|
| MicroRNA-29c-3p in dual-labeled exosome is a potential | Li Y, Xia M, Meng S, Wu D, Ling S, Chen X, Liu C. |
| diagnostic marker of subjective cognitive decline      |                                                   |

Journal

Neurobiol Dis

## Biomarkers (molecular imaging)

| Title                                                                    | Authors                                           |
|--------------------------------------------------------------------------|---------------------------------------------------|
| Subtle Cognitive Deficits Are Associated with Amyloid- $eta$ Positivity, | Ryu SY, Hong YJ, Ho S, Jeong JH, Park KH, Kim S,  |
| but Not Severity of Self-Reported Decline: Results from the CoSCo        | Wang MJ, Choi SH, Yang DW.                        |
| Study                                                                    |                                                   |
| Predicting Amyloid Positivity in Cognitively Unimpaired Older            | Petersen KK, Lipton RB, Grober E, Davatzikos C,   |
| Adults: A Machine Learning Approach Using A4 Data                        | Sperling RA, Ezzati A.                            |
| Tau levels are higher in objective subtle cognitive decline but not      | Thomas KR, Weigand AJ, Edwards LC, Edmonds        |
| subjective memory complaint                                              | EC, Bangen KJ, Ortiz G, Walker KS, Bondi MW;      |
|                                                                          | Alzheimer's Disease Neuroimaging Initiative.      |
| Brain Amyloid Index as a Probable Marker Bridging Between                | Choe YM, Suh GH, Lee BC, Choi IG, Lee JH, Kim     |
| Subjective Memory Complaint and Objective Cognitive                      | HS, Hwang J, Kim JW.                              |
| Performance                                                              |                                                   |
| Difference in Amyloid Load Between Single Memory Domain and              | Wang X, Bi Q, Lu J, Chan P, Hu X, Su L, Jessen F, |
| Multidomain Subjective Cognitive Decline: A Study from the               | Lin H, Han C, Shu N, Liu H, Han Y.                |
| SILCODE                                                                  |                                                   |
| Prevalence Estimates of Amyloid Abnormality Across the                   | Jansen WJ, Janssen O, Tijms BM, Vos SJB,          |
| Alzheimer Disease Clinical Spectrum                                      | Ossenkoppele R, Visser PJ; Amyloid Biomarker      |
|                                                                          | Study Group, Aarsland D, Alcolea D, et al.        |

| Journal                    |
|----------------------------|
| Dement Geriatr Cogn Disord |
| Neurology                  |
| Alzheimers Res Ther        |
| Front Neurosci             |
| J Alzheimers Dis           |
| JAMA Neurol                |

## Biomarkers (multimodal)

| Title                                                                     | Authors                                             |
|---------------------------------------------------------------------------|-----------------------------------------------------|
| Identification of subjective cognitive decline due to Alzheimer's         | Lin H, Jiang J, Li Z, Sheng C, Du W, Li X, Han Y.   |
| disease using multimodal MRI combining with machine learning              |                                                     |
| Percentage amplitude of fluctuation and structural covariance             | Xu K, Wei Y, Zhang S, Zhao L, Geng B, Mai W, Li P,  |
| changes of SCDin patients: A multimodal imaging study                     | Liang L, Chen D, Zeng X, Deng D, Liu P.             |
| Cerebral blood flow, amyloid burden, and cognition in cognitively         | Ebenau JL, Visser D, Verfaillie SCJ, Timmers T, van |
| normal individuals                                                        | Leeuwenstijn MSSA, Kate MT, et al.                  |
| White matter lesions may be an early marker for age-related               | Morrison C, Dadar M, Villeneuve S, Collins DL.      |
| cognitive decline                                                         |                                                     |
| Benzodiazepine use and neuroimaging markers of Alzheimer's                | Gallet Q, Bouteloup V, Locatelli M, Habert MO,      |
| disease in nondemented older individuals                                  | Chupin M, Delrieu J, Lebouvier T, Robert G, et al.  |
| SCD-related worries modulate the relationship between global              | Wang X, Wang M, Wang X, Zhou F, Jiang J, Liu H,     |
| amyloid load and gray matter volume in preclinical AD                     | Han Y.                                              |
| Structural and Functional Abnormalities of Olfactory-Related              | Chen B, Wang Q, Zhong X, Mai N, Zhang M, Zhou       |
| Regions in SCD, MCI, and AD                                               | H, Haehner A, Chen X, Wu Z, Auber LA, et al.        |
| Association of Cholinergic Basal Forebrain Volume and Functional          | Teipel SJ, Dyrba M, Ballarini T, Brosseron F, Bruno |
| Connectivity with Markers of Inflammatory Response in AD                  | D, Buerger K, Cosma NC, Dechent P, et al.           |
| Machine learning based on the multimodal connectome can                   | Chen H, Li W, Sheng X, Ye Q, Zhao H, Xu Y, Bai F;   |
| predict the preclinical stage of AD: a preliminary study                  | Alzheimer's Disease Neuroimaging Initiative.        |
| Assessing clinical progression from SCD to mild cognitive                 | Liu Y, Yue L, Xiao S, Yang W, Shen D, Liu M.        |
| impairment with incomplete multi-modal neuroimages                        |                                                     |
| Amyloid pathology but not APOE $\epsilon 4$ status is permissive for tau- | Düzel E, Ziegler G, Berron D, Maass A, Schütze H,   |
| related hippocampal dysfunction                                           | Cardenas-Blanco A, Glanz W, Metzger C, et al.       |

| Journal                    |
|----------------------------|
| Cereb Cortex               |
| Front Neurosci             |
| Eur J Nucl Med Mol Imaging |
| Neuroimage Clin            |
| Neuropsychopharmacology    |
| Brain Imaging Behav        |
| Int J Neuropsychopharmacol |
| J Alzheimers Dis           |
| Eur Radiol                 |
| Med Image Anal             |
| Brain                      |

## Biomarkers (structural imaging)

| Title                                                               | Authors                                             |
|---------------------------------------------------------------------|-----------------------------------------------------|
| Altered pattern analysis and identification of subjective cognitive | Xu X, Chen P, Xiang Y, Xie Z, Yu Q, Zhou X, Wang P. |
| decline based on morphological brain network                        |                                                     |
| Cholinergic white matter pathways along the Alzheimer's disease     | Nemy M, Dyrba M, Brosseron F, Buerger K, Dechent    |
| continuum                                                           | P, Dobisch L, Ewers M, Fliessbach K, et al.         |
| Rich-Club Organization Disturbances of the Individual               | Peng L, Feng J, Ma D, Xu X, Gao X.                  |
| Morphological Network in Subjective Cognitive Decline               |                                                     |
| Reduced Inter-Voxel White Matter Integrity in Subjective Cognitive  | Chao YP, Liu PB, Wang PN, Cheng CH.                 |
| Decline: Diffusion Tensor Imaging With Tract-Based Spatial          |                                                     |
| Statistics Analysis                                                 |                                                     |
| White matter hyperintensity load varies depending on subjective     | Morrison C, Dadar M, Villeneuve S, Ducharme S,      |
| cognitive decline criteria                                          | Collins DL.                                         |
| Domain-Prior-Induced Structural MRI Adaptation for Clinical         | Yu M, Guan H, Fang Y, Yue L, Liu M.                 |
| Progression Prediction of Subjective Cognitive Decline              |                                                     |
| Differential associations of visual memory with hippocampal         | Huang Y, Huang L, Wang Y, Liu Y, Lo CZ, Guo Q.      |
| subfields in subjective cognitive decline and amnestic mild         |                                                     |
| cognitive impairment                                                |                                                     |

| Journal                                  |
|------------------------------------------|
| Front Aging Neurosci                     |
| Brain                                    |
| Front Aging Neurosci                     |
| Front Aging Neurosci                     |
| Geroscience                              |
| Med Image Comput Comput Assist<br>Interv |
| BMC Geriatr                              |

### SCD and Covid-19

| Title                                                         | Authors                                            |
|---------------------------------------------------------------|----------------------------------------------------|
| Subjective cognitive decline and anxious/depressive symptoms  | Akinci M, Sánchez-Benavides G, Brugulat-Serrat A,  |
| during the COVID-19 pandemic: what is the role of stress      | Peña-Gómez C, Palpatzis E, Shekari M, Deulofeu C,  |
| perception, stress resilience, and $oldsymbol{eta}$ -amyloid? | Fuentes-Julian S, Salvadó G, González-de-Echávarri |
|                                                               | JM, Suárez-Calvet M, Minguillón C, Fauria K,       |
|                                                               | Molinuevo JL, Gispert JD, Grau-Rivera O, Arenaza-  |
|                                                               | Urquijo EM; ALFA Study.                            |
| Psychosocial Effects of COVID-19 Measures on (Pre-)Dementia   | Bakker ED, van Maurik IS, Mank A, Zwan MD,         |
| Patients During Second Lockdown                               | Waterink L, van den Buuse S, van den Broeke JR,    |
|                                                               | Gillissen F, van de Beek M, Lemstra E, van den     |
|                                                               | Bosch KA, van Leeuwenstijn M, Bouwman FH,          |
|                                                               | Scheltens P, van der Flier WM.                     |

### Journal

### Alzheimers Res Ther

J Alzheimers Dis

### **Clinical trial**

| Title                                                                                                                                              | Authors                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Can a serious game-based cognitive training attenuate cognitive decline related to Alzheimer's disease? Protocol for a randomized controlled trial | Brill E, Krebs C, Falkner M, Peter J, Henke K, Züst M, Minkova L, Brem AK,<br>Klöppel S. |
|                                                                                                                                                    |                                                                                          |

### Journal

BMC Psychiatry